Part Number Hot Search : 
ATMEL OP213FP ISL6326 S6010 ISL6326 ISD2575T 82C465MV LT1000
Product Description
Full Text Search
 

To Download MRF7S19100NR108 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  mrf7s19100nr1 mrf7s19100nbr1 1 rf device data freescale semiconductor rf power field effect transistors n - channel enhancement - mode lateral mosfets designed for cdma base station applications with frequencies from 1930 to 1990 mhz. suitable for cdma and multic arrier amplifier applications. to be used in class ab and class c fo r p c n - p c s / c e l l u l a r r a d i o a n d w l l applications. ? typical single - carrier w - cdma performance: v dd = 28 volts, i dq = 1000 ma, p out = 29 watts avg., full frequency band, 3gpp test model 1, 64 dpch with 50% clipping, channel bandwidth = 3.84 mhz, input signal par = 7.5 db @ 0.01% probability on ccdf. power gain ? 17.5 db drain efficiency ? 30% device output signal par ? 6.1 db @ 0.01% probability on ccdf acpr @ 5 mhz offset ? - 38 dbc in 3.84 mhz channel bandwidth ? capable of handling 5:1 vswr, @ 32 vdc, 1960 mhz, 100 watts cw peak tuned output power ? p out @ 1 db compression point  100 w cw features ? 100% par tested for guaranteed output power capability ? characterized with series equivalent large - signal impedance parameters ? internally matched for ease of use ? integrated esd protection ? designed for digital predistortion error correction systems ? 225 c capable plastic package ? rohs compliant ? in tape and reel. r1 suffix = 500 units per 44 mm, 13 inch reel. table 1. maximum ratings rating symbol value unit drain - source voltage v dss - 0.5, +65 vdc gate - source voltage v gs - 0.5, +10 vdc operating voltage v dd 32, +0 vdc storage temperature range t stg - 65 to +200 c case operating temperature t c 150 c operating junction temperature (1,2) t j 225 c table 2. thermal characteristics characteristic symbol value (2,3) unit thermal resistance, junction to case case temperature 82 c, 100 w cw case temperature 79 c, 29 w cw r jc 0.57 0.68 c/w 1. continuous use at maximum temperature will affect mttf. 2. mttf calculator available at http://www.freescale.com/rf . select software & tools/development tools/calculators to access mttf calculators by product. 3. refer to an1955, thermal measurement methodology of rf power amplifiers. go to http://www.freescale.com/rf . select documentation/application notes - an1955. document number: mrf7s19100n rev. 3, 12/2008 freescale semiconductor technical data mrf7s19100nr1 mrf7s19100nbr1 1930 - 1990 mhz, 29 w avg., 28 v single w - cdma lateral n - channel rf power mosfets case 1486 - 03, style 1 to - 270 wb - 4 plastic mrf7s19100nr1 case 1484 - 04, style 1 to - 272 wb - 4 plastic mrf7s19100nbr1 ? freescale semiconductor, inc., 2006, 2008. all rights reserved.
2 rf device data freescale semiconductor mrf7s19100nr1 mrf7s19100nbr1 table 3. esd protection characteristics test methodology class human body model (per jesd22 - a114) 1c (minimum) machine model (per eia/jesd22 - a115) a (minimum) charge device model (per jesd22 - c101) iv (minimum) table 4. moisture sensitivity level test methodology rating package peak temperature unit per jesd 22 - a113, ipc/jedec j - std - 020 3 260 c table 5. electrical characteristics (t c = 25 c unless otherwise noted) characteristic symbol min typ max unit off characteristics zero gate voltage drain leakage current (v ds = 65 vdc, v gs = 0 vdc) i dss ? ? 10 adc zero gate voltage drain leakage current (v ds = 28 vdc, v gs = 0 vdc) i dss ? ? 1 adc gate - source leakage current (v gs = 5 vdc, v ds = 0 vdc) i gss ? ? 500 nadc on characteristics gate threshold voltage (v ds = 10 vdc, i d = 320 adc) v gs(th) 1 2 3 vdc gate quiescent voltage (1) (v dd = 28 vdc, i d = 1000 madc, measured in functional test) v gs(q) 2 2.8 4 vdc drain - source on - voltage (v gs = 10 vdc, i d = 3.2 adc) v ds(on) 0.2 0.24 0.4 vdc dynamic characteristics (2) reverse transfer capacitance (v ds = 28 vdc 30 mv(rms)ac @ 1 mhz, v gs = 0 vdc) c rss ? 1.54 ? pf output capacitance (v ds = 28 vdc 30 mv(rms)ac @ 1 mhz, v gs = 0 vdc) c oss ? 553.5 ? pf functional tests (in freescale test fixture, 50 ohm system) v dd = 28 vdc, i dq = 1000 ma, p out = 29 w avg., f1 = 1930 mhz, f2 = 1990 mhz, single - carrier w - cdma, 3gpp test model 1, 64 dpch, 50% clipping, par = 7.5 db @ 0.01% probability on ccdf. acpr measured in 3.84 mhz channel bandwidth @ 5 mhz offset. power gain g ps 16.5 17.5 19.5 db drain efficiency d 28.5 30 ? % output peak - to - average ratio @ 0.01% probability on ccdf par 5.7 6.1 ? db adjacent channel power ratio acpr ? -38 -36 dbc input return loss irl ? -12 -10 db 1. v gg = 11/10 x v gs(q) . parameter measured on freescale test fixture, due to resistive divider network on the board. refer to test circuit schematic. 2. part internally matched both on input and output. (continued)
mrf7s19100nr1 mrf7s19100nbr1 3 rf device data freescale semiconductor table 5. electrical characteristics (t c = 25 c unless otherwise noted) (continued) characteristic symbol min typ max unit typical performances (in freescale test fixture, 50 hm system) v dd = 28 vdc, i dq = 1000 ma, 1930 - 1990 mhz bandwidth video bandwidth @ 100 w pep p out where im3 = - 30 dbc (tone spacing from 100 khz to vbw) imd3 = imd3 @ vbw frequency - imd3 @ 100 khz <1 dbc (both sidebands) vbw ? 30 ? mhz gain flatness in 60 mhz bandwidth @ p out = 29 w avg. g f ? 1 ? db average group delay @ p out = 100 w cw, f = 1960 mhz delay ? 2.15 ? ns part - to - part insertion phase variation @ p out = 100 w cw, f = 1960 mhz, six sigma window ? ? 28.8 ? gain variation over temperature (-30 c to +85 c) g ? 0.019 ? db/ c output power variation over temperature (-30 c to +85 c) p1db ? 0.015 ? dbm/ c
4 rf device data freescale semiconductor mrf7s19100nr1 mrf7s19100nbr1 figure 1. mrf7s19100nr1(nbr1) test circuit schematic z8 0.319 x 0.880 microstrip z9 0.390 x 0.215 microstrip z10 0.627 x 0.084 microstrip z11 0.743 x 0.084 microstrip z12, z13 1.326 x 0.121 microstrip pcb arlon cuclad 250gx - 0300 - 55 - 22, 0.030, r = 2.55 z1 0.744 x 0.084 microstrip z2 0.383 x 0.084 microstrip z3 0.600 x 0.230 microstrip z4 0.505 x 0.800 microstrip z5 1.086 x 0.080 microstrip z6 0.452 x 0.080 microstrip z7 0.161 x 0.880 microstrip v bias v supply rf output rf input dut c1 c2 c3 c4 c5 c6 r1 z1 z2 z3 c7 z8 c8 z10 z7 r2 z5 r3 z4 z11 z12 z13 v supply c9 c10 c11 + z9 z6 table 6. mrf7s19100nr1(nbr1) test circuit component designations and values part description part number manufacturer c1 10 f, 35 v tantalum capacitor t491d106k035at kemet c2, c5, c6, c10, c11 10 f, 50 v chip capacitors grm55dr61h106ka88l murata c3, c7 5.1 pf chip capacitors atc100b5r1bt500xt atc c4, c9 8.2 pf chip capacitors atc100b8r2bt500xt atc c8 10 pf chip capacitor atc100b100bt500xt atc r1 1 k , 1/4 w chip resistor crcw12061001fkea vishay r2 10 k , 1/4 w chip resistor crcw12061002fkea vishay r3 10 , 1/4 w chip resistor crcw120610r0fkea vishay
mrf7s19100nr1 mrf7s19100nbr1 5 rf device data freescale semiconductor figure 2. mrf7s19100nr1(nbr1) test circuit component layout r1 cut out area c1 c2 r2 c3 r3 c7 c4 c5 c6 c8 c9 c10 c11 mrf7s19100n/nb rev. 1
6 rf device data freescale semiconductor mrf7s19100nr1 mrf7s19100nbr1 typical characteristics 2040 1880 1980 1940 1920 1960 1900 2020 2000 g ps , power gain (db) 2040 1880 irl g ps parc f, frequency (mhz) figure 3. output peak - to - average ratio compression (parc) broadband performance @ p out = 29 watts avg. v dd = 28 vdc, p out = 29 w (avg.), i dq = 1000 ma single?carrier w?cdma, 3.84 mhz channel bandwidth, par = 7.5 db @ 0.01% probability (ccdf) 1980 1940 1920 11 19 18 17 16 15 14 13 12 ?1.7 33 32 31 30 29 ?1.4 ?1.5 ?1.6 d irl, input return loss (db) parc (db) ?30 ?10 ?15 ?20 ?25 d , drain efficiency (%) 1960 g ps , power gain (db) irl g ps f, frequency (mhz) figure 4. output peak - to - average ratio compression (parc) broadband performance @ p out = 47 watts avg. v dd = 28 vdc, p out = 47 w (avg.), i dq = 1000 ma single?carrier w?cdma, 3.84 mhz channel bandwidth, par = 7.5 db @ 0.01% probability (ccdf) 11 19 18 17 16 15 14 13 12 ?3.3 40 39 38 37 36 ?3 ?3.1 ?3.2 d irl, input return loss (db) parc (db) ?30 ?10 ?15 ?20 ?25 d , drain efficiency (%) figure 5. two - tone power gain versus output power 100 15 20 1 i dq = 1500 ma 1250 ma p out , output power (watts) pep v dd = 28 vdc, f1 = 1955 mhz, f2 = 1965 mhz two?tone measurements, 10 mhz tone spacing 500 ma 1000 ma 18 17 16 10 200 g ps , power gain (db) figure 6. third order intermodulation distortion versus output power ?10 i dq = 500 ma p out , output power (watts) pep 1250 ma 1000 ma 750 ma 1500 ma 10 ?20 ?30 ?40 100 ?60 ?50 v dd = 28 vdc, f1 = 1955 mhz, f2 = 1965 mhz two?tone measurements, 10 mhz tone spacing 1 intermodulation distortion (dbc) imd, third order parc 19 750 ma 200 1900 2020 2000
mrf7s19100nr1 mrf7s19100nbr1 7 rf device data freescale semiconductor typical characteristics figure 7. intermodulation distortion products versus output power p out , output power (watts) pep imd, intermodulation distortion (dbc) ?70 ?10 1 100 ?40 ?50 10 ?30 ?20 ?60 7th order 5th order 3rd order figure 8. intermodulation distortion products versus tone spacing figure 9. output peak - to - average ratio compression (parc) versus output power 1 p out , output power (watts) ?1 ?3 ?5 30 actual ideal 0 ?2 ?4 output compression at the 0.01% probability on ccdf (db) ?3 db = 47 w 300 14 20 0 60 p out , output power (watts) cw figure 10. power gain and drain efficiency versus cw output power v dd = 28 vdc i dq = 1000 ma f = 1960 mhz t c = ?30  c 25  c 85  c ?30  c 25  c 85  c 10 1 19 18 17 16 15 50 40 30 20 10 d , drain efficiency (%) g ps d g ps , power gain (db) 20 40 200 v dd = 28 vdc, i dq = 1000 ma f1 = 1955 mhz, f2 = 1965 mhz two?tone measurements, 10 mhz tone spacing 50 60 100 20 50 45 40 35 30 25 d , drain efficiency (%) v dd = 28 vdc, i dq = 1000 ma f = 1960 mhz, input par = 7.5 db ?1 db = 25 w ?2 db = 35 w two?tone spacing (mhz) 10 0 ?10 ?20 ?40 1 100 imd, intermodulation distortion (dbc) ?50 ?30 ?60 im7?u im7?l im3?u im3?l im5?u im5?l v dd = 28 vdc, p out = 100 w (pep), i dq = 1000 ma two?tone measurements (f1 + f2)/2 = center frequency of 1960 mhz
8 rf device data freescale semiconductor mrf7s19100nr1 mrf7s19100nbr1 typical characteristics figure 11. power gain versus output power p out , output power (watts) cw g ps , power gain (db) 160 14 19 0 120 16 15 40 80 17 18 28 v i dq = 1000 ma f = 1960 mhz figure 12. mttf factor versus junction temperature 200 v dd = 32 v 24 v 250 10 8 90 t j , junction temperature ( c) this above graph displays calculated mttf in hours when the device is operated at v dd = 28 vdc, p out = 29 w avg., and d = 30%. mttf calculator available at http://www.freescale.com/rf. select software & tools/development tools/calculators to access mttf calculators by product. 10 7 10 6 10 5 110 130 150 170 190 mttf (hours) 210 230 w - cdma test signal 10 0.0001 100 0 peak?to?average (db) figure 13. ccdf w - cdma 3gpp, test model 1, 64 dpch, 50% clipping, single - carrier test signal 10 1 0.1 0.01 0.001 24 68 probability (%) w?cdma. acpr measured in 3.84 mhz channel bandwidth @  5 mhz offset. par = 7.5 db @ 0.01% probability on ccdf input signal ?60 ?110 ?10 (db) ?20 ?30 ?40 ?50 ?70 ?80 ?90 ?100 3.84 mhz channel bw 7.2 1.8 5.4 3.6 0 ?1.8 ?3.6 ?5.4 ?9 9 f, frequency (mhz) figure 14. single - carrier w - cdma spectrum ?7.2 ?acpr in 3.84 mhz integrated bw ?acpr in 3.84 mhz integrated bw
mrf7s19100nr1 mrf7s19100nbr1 9 rf device data freescale semiconductor z o = 5 z load f = 1880 mhz z source f = 2040 mhz f = 1880 mhz f = 2040 mhz v dd = 28 vdc, i dq = 1000 ma, p out = 29 w avg. f mhz z source  z load  1880 4.257 - j2.758 2.143 - j3.408 1900 4.388 - j2.617 2.038 - j3.236 1920 4.521 - j2.560 1.944 - j3.066 1940 4.568 - j2.630 1.858 - j2.898 1960 4.424 - j2.758 1.775 - j2.725 1980 4.124 - j2.800 1.708 - j2.550 2000 3.819 - j2.611 1.643 - j2.387 2020 3.567 - j2.292 1.572 - j2.223 2040 3.525 - j1.844 1.487 - j2.029 z source = test circuit impedance as measured from gate to ground. z load = test circuit impedance as measured from drain to ground. figure 15. series equivalent source and load impedance z source z load input matching network device under test output matching network
10 rf device data freescale semiconductor mrf7s19100nr1 mrf7s19100nbr1 alternative peak tune load pull characteristics 46 62 32 p in , input power (dbm) v dd = 28 vdc, i dq = 1000 ma pulsed cw, 12 sec(on), 10% duty cycle, f = 1960 mhz 58 54 52 50 46 34 38 36 40 44 42 actual ideal 60 56 48 30 p out , output power (dbm) p6db = 52.12 dbm (162.60 w) note: measured in a peak tuned load pull fixture p3db = 51.61 dbm (144.90 w) p1db = 50.39 dbm (109.50 w) test impedances per compression level z source z load p3db 4.39 - j5.66 1.81 - j3.27 figure 16. pulsed cw output power versus input power 46 62 32 p in , input power (dbm) v dd = 32 vdc, i dq = 1000 ma pulsed cw, 12 sec(on), 10% duty cycle, f = 1960 mhz 58 54 52 50 46 34 38 36 40 44 42 actual ideal 60 56 48 30 p out , output power (dbm) p6db = 52.81 dbm (190.80 w) note: measured in a peak tuned load pull fixture p3db = 52.20 dbm (165.90 w) p1db = 50.94 dbm (124.20 w) test impedances per compression level z source z load p3db 4.39 - j5.66 1.81 - j3.27 figure 17. pulsed cw output power versus input power
mrf7s19100nr1 mrf7s19100nbr1 11 rf device data freescale semiconductor package dimensions
12 rf device data freescale semiconductor mrf7s19100nr1 mrf7s19100nbr1
mrf7s19100nr1 mrf7s19100nbr1 13 rf device data freescale semiconductor
14 rf device data freescale semiconductor mrf7s19100nr1 mrf7s19100nbr1
mrf7s19100nr1 mrf7s19100nbr1 15 rf device data freescale semiconductor
16 rf device data freescale semiconductor mrf7s19100nr1 mrf7s19100nbr1
mrf7s19100nr1 mrf7s19100nbr1 17 rf device data freescale semiconductor product documentation refer to the following documents to aid your design process. application notes ? an1907: solder reflow attach method for high power rf devices in plastic packages ? an1955: thermal measurement methodology of rf power amplifiers ? an3263: bolt down mounting method for high power rf transistors and rfics in over - molded plastic packages engineering bulletins ? eb212: using data sheet impedances for rf ldmos devices revision history the following table summarizes revisions to this document. revision date description 3 jan. 2008 ? added case operating temperature limit to the maximum ratings table and set limit to 150 c, p. 1 ? operating junction temperature increased from 200 c to 225 c in maximum ratings table, related ?continuous use at maximum temperature will affect mttf? footnote added and changed 200 c to 225 c in capable plastic package bullet, p. 1 ? corrected v ds to v dd in the rf test condition voltage callout for v gs(q) , on characteristics table, p. 2 ? updated typical performance table to provide better definition of characterization attributes, p. 3 ? updated pcb information to show more specific material details, fig. 1, test circuit schematic, p. 4 ? updated part numbers in table 6, component designations and values, to latest rohs compliant part numbers, p. 4 ? adjusted scale for fig. 8, intermodulation distortion products versus tone spacing, to better match the device?s capabilities, p. 7 ? replaced fig. 12, mttf versus junction temperature with updated graph. removed amps 2 and listed operating characteristics and location of mttf calculator for device, p. 8 ? updated fig. 13, ccdf w - cdma 3gpp, test model 1, 64 dpch, 50% clipping, single - carrier test signal, to better represent production test signal, p. 8 ? replaced case outline 1486 - 03, issue c, with 1486 - 03, issue d, p.11 - 13. added pin numbers 1 through 4 on sheet 1. ? replaced case outline 1484 - 04, issue d, with 1484 - 04, issue e, p. 14 - 16. added pin numbers 1 through 4 on sheet 1, replacing gate and drain notations with pin 1 and pin 2 designations. ? added product documentation and revision history, p. 17
18 rf device data freescale semiconductor mrf7s19100nr1 mrf7s19100nbr1 information in this document is provided solely to enable system and software implementers to use freescale semiconductor products. there are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. freescale semiconductor reserves the right to make changes without further notice to any products herein. freescale semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does freescale semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. ?typical? parameters that may be provided in freescale semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. all operating parameters, including ?typicals?, must be validated for each customer application by customer?s technical experts. freescale semiconductor does not convey any license under its patent rights nor the rights of others. freescale semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the freescale semiconductor product could create a situation where personal injury or death may occur. should buyer purchase or use freescale semiconductor products for any such unintended or unauthorized application, buyer shall indemnify and hold freescale semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that freescale semiconductor was negligent regarding the design or manufacture of the part. freescale  and the freescale logo are trademarks of freescale semiconductor, inc. all other product or service names are the property of their respective owners. ? freescale semiconductor, inc. 2006, 2008. all rights reserved. how to reach us: home page: www.freescale.com web support: http://www.freescale.com/support usa/europe or locations not listed: freescale semiconductor, inc. technical information center, el516 2100 east elliot road tempe, arizona 85284 1 - 800 - 521 - 6274 or +1 - 480 - 768 - 2130 www.freescale.com/support europe, middle east, and africa: freescale halbleiter deutschland gmbh technical information center schatzbogen 7 81829 muenchen, germany +44 1296 380 456 (english) +46 8 52200080 (english) +49 89 92103 559 (german) +33 1 69 35 48 48 (french) www.freescale.com/support japan: freescale semiconductor japan ltd. headquarters arco tower 15f 1 - 8 - 1, shimo - meguro, meguro - ku, tokyo 153 - 0064 japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com asia/pacific: freescale semiconductor china ltd. exchange building 23f no. 118 jianguo road chaoyang district beijing 100022 china +86 10 5879 8000 support.asia@freescale.com for literature requests only: freescale semiconductor literature distribution center p.o. box 5405 denver, colorado 80217 1 - 800 - 441 - 2447 or +1 - 303 - 675 - 2140 fax: +1 - 303 - 675 - 2150 ldcforfreescalesemiconductor@hibbertgroup.com document number: mrf7s19100n rev. 3, 12/2008


▲Up To Search▲   

 
Price & Availability of MRF7S19100NR108

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X